	S4 Nat 5 November Prelim Paper B – Non-Calculator	20
1.	Express $x^2 + 6x - 5$ in the form $(x + p)^2 + q$	2
2.	Multiply out the brackets and collect like terms (4x-5)(2x+3) + 8x	3
3.	Express this fraction with a rational denominator $\frac{5}{2\sqrt{3}}$	2
4.	 (a) Find the equation of the line joining points (2,3) and (5, 9) (b) Find the coordinates of the point where this line crosses the (i) the y-axis (ii) the x-axis 	3 1 2
5.	Write in its simplest form (a) $\sqrt{18} \div \sqrt{2}$ (b) $\frac{a^5 \times a^3}{a^4}$	4
6.	Write as a single fraction in its simplest form $\frac{3a}{5x} \div \frac{a}{x^2}$	3

4.	Determine the nature of the roots of the quadratic equation $9x^2 - 6x + 1 = 0$	2
5.	Change the subject of the formula $4\sqrt{b} - d = c$ to 'b'	3
6.	For one of their performances a drama group charges different ticket prices for each evening.(a) Sam bought 3 tickets for Friday and 4 tickets for Saturday which cost him £57.	
	Using <i>x</i> to represent the Friday tickets and <i>y</i> to represent the Saturday tickets, write an equation to illustrate the above situation.	1
	(b) Sara bought 4 tickets for Friday and 2 for Saturday. She was charged £46.Write another equation in <i>x</i> and <i>y</i> to illustrate this situation.	1
	(c) How much does a ticket cost for each night?	4
7.	The parabola in the diagram has The equation $y = 3x^2 + 4x - 2$. The parabola cuts the <i>x</i> -axis at P and Q . Find the coordinates of P and Q Giving you answers correct to 1 decimal place.	
		5

Answers

Paper 1	Paper 2
1. $(x-3)^2 - 14$	1 $(2x+3)(x-2)$
2. $8x^2 + 12x - 10x - 15 + 8x$ = $8x^2 + 2x - 15 + 8x$ = $8r^2 + 10r - 15$	2. $V = \frac{4}{3} \times \pi \times 2.625^3 = 75.766379 \dots = 75.8 cm^3$
	(b) $75.8 = \pi \times 2.5^2 \times h \rightarrow h = \frac{75.8}{6.25\pi} \rightarrow h = 3.86 cm$
3. $\frac{5}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{6}$	Area = $\frac{250}{360} \times \pi \times 40^2 = 3490.66 cm^2$ 3. Circumference = $\frac{250}{360} \times \pi \times 80 = 174.5 cm$
4. (a) $y = 2x - 1$	4. $b^2 - 4ac = (-6)^2 - 4(9)(1)$
(b)(i) (0,-1) (ii) $0 = 2x - 1$ $\frac{1}{2} = x$ ($\frac{1}{2}$, 0)	$b^2 - 4ac = 0$ quadratic equation has two real equal roots
5	
(a) $\frac{\sqrt{18}}{\sqrt{2}} = \sqrt{9} = 3$	$4\sqrt{b} = c + d$ $5. \rightarrow \qquad \sqrt{b} = \frac{c + d}{4}$
$(b) \frac{a^8}{a^4} = a^4$	$\rightarrow \qquad b = \left(\frac{c+d}{4}\right)^2$
6.	6. (a) $3f + 4s = 57$
$\frac{3a}{3a} \times \frac{x^2}{x^2} = \frac{3x}{3x}$	(b) $4f + 2s = 46$
5x a 5	(c) $3f + 4s = 57$
	8f + 4s = 92
	5f = 35, $f = 7$ and $s = 9$
	Tickets for Friday are £7.00
	Tickets for Saturday are £9.00
	7. Using the quadratic formula a=3, $b=4$, $c=-2$
	discriminant is $(4)^2 - 4(3)(-2) = 40$
	$x = \frac{-4 \pm \sqrt{40}}{2(3)}, x = -1.72075 x = 0.3874$
	P is (-1.7, 0) and Q is (0.4, 0)